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Abstraet 

The long-period antiphase-domain structure of CuAu 
II with an orthorhombic fundamental cell [a = 
3.956 (3), b = 3.972 (2), c = 3.976 (2) A] is analyzed 
on the basis of a four-dimensional expression of the 
structure factor and a four-dimensional space group. 
This analysis requires half the number of parameters of 
the usual three-dimensional analysis based on the 
superstructure model because its four-dimensional 
symmetry is higher than its three-dimensional sym- 
metry. The structure is described as a modulated 
structure with highly anharmonic substitutional 
modulation and a slight displacive modulation with a 
commensurate wavevector k = 0. lb*. 

1. Introduction 

The structure-factor formula for a modulated structure 
derived in a previous paper [Yamamoto (1982); 
hereafter (I)] is a generalization of a structure-factor 
formula derived by de Wolff (1974) in three points: de 
Wolff's formula is extended to cover the cases in which 
a modulated structure has both density and displacive 
modulations; the dimension of modulation is higher 
than one; and some wavevectors of the modulation 
wave are commensurable with the fundamental 
reciprocal lattice while others are incommensurable. 
This extension makes it possible to analyze the 
superstructure based on a multi-dimensional de- 
scription. 

In this paper, we apply the formula to CuAu II 
which has one-dimensional substitutional and dis- 
placive modulations with a commensurable wave- 
vector. As stated in (I), the displacive modulation plays 
an essential role in determining the modulation wave 
for substitutional modulation. To demonstrate the 
analysis of a superstructure based on the new method, 
the known structure of CuAu II (Okamura, Iwasaki & 
Ogawa, 1968) is employed. It is a typical example of 
substitutional modulation in which one site is occupied 
by two atoms with fractional occupation probabilities. 
This substitutional modulation has a long period 
represented by the wavevector k = 0. l b*. This is a 
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Fig. 1. The ideal antiphase-domain structure of CuAu II. 

well known antiphase-domain structure (see Fig. 1) 
which has a block-type modulation wave with wavevec- 
tor k for the occupation probability of Cu and Au. 

The symmetry of a one-dimensionally modulated 
incommensurate structure is described by a four- 
dimensional space group based on a fictitious four- 
dimensional lattice (de Wolff, 1974; Janner & Janssen, 
1977). This multi-dimensional description is also 
effective in the commensurate (super-) structure as 
shown by Valentine, Cavin & Yakel (1977). Since the 
structure-factor formula derived in (I) is expressed in 
terms of four-dimensional space R 4, the analysis based 
on the four-dimensional space group can easily be 
performed. In this paper, the analysis based on the 
formula and the four-dimensional symmetry is demon- 
strated using the data of Okamura et al. (1968). 

2. Four-dimensional space group 

In the four-dimensional description, to all reflections 
are assigned four integers hi . . . . .  ha: 

h = h I a* + h 2 b* + h 3 C* + h 4 k, (1) 

where a*, b*, c* are the unit vectors in the reciprocal 
lattice of the fundamental structure which has an 
orthorhombic unit cell with a = 3.956, b = 3.972, c = 
3.676 A and k is the wavevector of the modulation 
wave represented by 0. l b*. Fig. 2 shows a schematic 
view of the diffraction pattern. In this case the 
higher-order satellite reflections are very weak, so that 
the correspondence between the lattice points in R a and 
the observed reflections can be regarded as one-to-one. 
Therefore, from the figure, the following extinction 
rules are obtained for general reflections h]h2hah4: 

h I + h 2 = 2n, (2) 
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Fig. 2. The diffraction aspect of CuAu II after Ogawa & Watanabe 
(1954) and Okamura, Iwasaki & Ogawa (1968). 

hi + h3 + h4 = 2n, (3) 

h 2 + h 3 + h 4 = 2n, (4) 

where n is an integer. These rules are derived from the 
following considerations. 

As mentioned in (I), the reciprocal lattice in R 4 is 
spanned by the unit vectors bl = a*, b 2 - b*, b 3 - e*, 
b 4 - k + d. This lattice is transformed into itself by the 
symmetry operator (R Ix) in R 4. From the definition, b 4 

is oblique to R 3 whenever k is nonzero. Therefore, the 
rotation operator R in R 4 is limited to that trans- 
forming b 4 into b 4 o r  - b  4 and b~, b2, b3 into their 
integral linear combinations. When a transformed 
vector is represented by a primed letter, the matrix 
element of the rotation operator, Rtj, is defined by 

4 

b~= ~ R i j b  j. (5) 
j = l  

Then the above statement is expressed by R .  = R4~ = 0 
(i = 1, 2, 3) and R44 = + 1. The double sign is plus or 
minus according as Iq transforms k into k or - k  
because b4 = k + d. [We take a centered lattice in the 
modulated structure whenever k is on the Brillouin- 
zone boundary of the fundamental structure. In this 
centered lattice, k is in the Brillouin zone (see 
Yamamoto & Nakazawa, 1982).] Thus we have a (3 + 
l)-reducible matrix for any symmetry operator in R4. 
The matrix elements of the first 3 x 3 part are the same 
as those in R 3 since b I --  a*, b2 = b*, b 3 --  g*. From this 
fact, it is convenient to use the same symbol for R as in 
R3.t For example, C2x has the nonzero elements R l l = 
1, R22 = - -1 ,  R33 = - 1 ,  R44 = - 1  since the fundamental 
structure is orthorhombic and k is parallel to the b axis. 

Another condition for the symmetry operator is: 
(R Ix) is also the symmetry operator in the fundamental 
structure. The fundamental structure in R 4 is defined by 
the limiting case of infinitesimal distortion [see (I)]. It is 
natural in the present case to consider a three- 
dimensional fundamental structure belonging to the 

5" Janner & Janssen (1977) used a primed symbol for Iq when R44 
= - 1 .  Unprimed symbols are used in this paper to unify the 
notation for all modulated structures since such notation is 
impossible for two- or higher-dimensional modulations. 

space group Fmmm. Cu and Au atoms are located at 
¼,¼,0 with the occupation probability of ½. The other 
three positions are obtained by the centering trans- 
lations l i l i (EI~,0,~), (El 11 (EI~,:,0), 0,~,~). These are the 
fourfold special positions 4(a) of Fmmm. [For the sake 
of comparison with the result of Okamura et al. (1968), 
the coordinate system with an origin different from that 
in International Tables for X-ray Crystallography 
(1969) is taken.] This space group is generated by 
(C2xl0,½,0), (C2yl½,0,0), (II0,0,0) and the centering 
translations. Corresponding to this, we can consider the 
space group in R 4 which is generated by (C2xl0,½,0,r4) 

(C2yl½,0,0,r4), (II0,0,0,r4) and the centering trans- 
lations (E 1½,½,0,r4), (E 1½,0,½,ra) and (El 11 0,'~,'~, ~'4). The 
fourth non-primitive translation, r4, must be deter- 
mined in each operator so that the resulting space 
group in R4 gives the extinction rules mentioned before. 

The G(1,2)-centered lattice (Wondratschek, Billow 
& Neubtiser, 1971) having the centering translations 
(El½,½,0,0), (EI½,0,½,~), (El0,½,½, 9 gives the extinction 
rules (2)-(4). Since all extinction rules are explained by 
the centering translations, we can take (C2xl0,½,0,0), 
(C2yl½,0,0,0) and (II0,0,0,0) together with the centering 
translations of the G(1,2)-centered lattice as the 
generating elements.* (From the fundamental structure 
and the extinction rules, two other space groups are 
also possible having the three-dimensional part Fmm2. 
These possibilities will be discussed later.) The space 
group employed maintains three centering translations, 
which are present in the fundamental structure, in a 
different form while the three-dimensional space group 
Imam (Okamura et al., 1968) loses some of them and 
cannot explain the systematic extinction rules (2)-(4). 
This shows that the four-dimensional space group 
describes the symmetry of the superstructure of CuAu 
II more efficiently. 

3. Modulation wave  

As shown in (I), the modulation waves for the atomic 
position, isotropic temperature factor and occupation 
probability are given by 

B"(22) = ½ ~  B~" exp/2~n)? ~'/+ c.c. (7) 
n 

P"(~?~) = ½Z P~" exp/2ran)?2/+ c.c. (8) 
n 

* Rigorously speaking, in addition, one generator for the 
translations (El0,0,0,1) is necessary. The entire list of superspace 
groups for one-dimensionally modulated structures by de Wolff, 
Janner & Janssen (1981) became available after the present work 
was completed. According to this, the space group employed is 
L Frnmm 

I l l "  
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In the present case, Cu and Au occupy the same 
position, so that when the independent Cu and Au 

2 atoms are represented by ~t = 1 and 2, we have u~, = us,, 
Bn ~ = B  2 ( n = 0 ,  1,2 . . . .  ) a n d p l = P 0 2 = ½ , P l = _ P 2 ( n  
-- 1, 2 . . . .  ). Since these atoms are located at the special 
position in the fundamental structure, their coordinates 
¼,~,0 in R 3 do not change by the symmetry operators 

I~,~,0), t:~,:,0), (I t~ ( E l 0 , 0 , 0 ) ,  ( C 2 x l 0 , 1 , 0 ) ,  (C2yl½,0 ,0) ,  (C2z 11 

(axl½,0,0), (ayl0,½,0,) and (a~10,0,0) in Fmmm. The 
coordinates x ~, x ~, x~, x ~ are functions of )? ~ in the 
four-dimensional description of modulated structures. 
Therefore, these functions must be invariant under the 
corresponding symmetry operations, which form the 
site-symmetry group G, generated by (C2xl0,½,0,0), 

I:,:,0,0). This condition constrains (C2yl½,0,O,O) and (I ' '  
the shape of the modulation function as shown in the 
following. 

From the transformation properties of a vector and a 
scalar, the atomic position, isotropic temperature factor 
and occupation probability at x ~ = (RI~) x" are given 
by 

4 

x g 2 g ) =  [(RIr)x"(Yc'i)]i= ~" Rijx~Yc~) + ri (9) 
j = l  

B'(dcy,)= (RIt) B.(Yc'2)= B"(Yc'2) (10) 

P"(f¢~)=(RIt)Pu(dc~)=PU(~).  (11) 

The special position x u must fulfill 

4 

x}'(2~) = Z R~jx][R41(Sc'g - l"4)] + ri (12) 
j = l  

for all elements of G s, where we use J ~ = R44~5c ~ - r 4) 
in (9). One method of finding the modulation function 
of the special position is to solve (1 2) for the generating 
elements of G,. From (C2yl½,0,0,0), we have x~'(J2) = 
-x~(J~)  + ½, x3(x~) = -x~()?2). Similarly, from 
(II½,½,0,0), we obtain x~(.r~) = -x~(- )?2)  + ½. 
(C2x10,½,0,0) does not give any additional conditions. 
From the transformation properties (10) and (1 1) for a 
scalar, similar considerations lead to B"(J~)  = 
B"(-)?~) and P"(~?~) = P"(-.,?~). These conditions 
and (6)-(8) give u~, = u~, = 0, Re u~, = 0, Im B," = Im 
P~" = 0, where Re and Im are the real and imaginary 
parts. 

Since the wavevector k is 0.1b* and is commen- 
surable with the fundamental reciprocal lattice, the 
structure-factor formula is given by 

9 

Fh = ~0 ~ P" Z f " (h)  P" ( .~ )  
,u(Rl't) v-O 

I- 

× exp l -  B u (.~ ~) h 2 
L 

+ 2m i=, ~ {hi[Rx"(Yc~)]i + hiri}] ' (13) 

II (ONE-DIMENSIONAL MODULATION) 

where . ~  -- k . i  u + v/10, x ~ ( ~ )  -- k . x " ( ~ )  + v/lO 
and p" is the multiplicity of the #th independent atom in 
the fundamental cell. There are four atomic sites in the 
fundamental cell, only one of which is independent. The 
modulation waves of the other three Cu and Au atoms 
are obtained from those of the independent Cu and Au 
atoms by the centering translations and (9)-(11). 
Therefore, p = 1, 2 in the above formula and (R Ix) 
refers to three centering translations and the identity 
operator (El0,0,0,0). The other symmetry operators 
included in the space group are not necessary because 
these do not produce new atomic positions. In the 
actual analysis, the reflections which are not observed 
due to the centering translations are dropped. Then the 
centering translations are also unnecessary because 
each atom produced by these operators gives the same 
contribution for observed reflections as the independent 
atoms. Formula (13) needs the coordinate only at the 
discrete points Yc~ = k2Y¢~ + v/lO (v = 0, 1, . . . ,  9). 
Therefore, x~, B ~, P~ in (6)-(8) are expressed by the 
Fourier terms up to n = 5 and from the restriction for 
the Fourier coefficients u~n, B~n, p1, we have only sine 
terms for u~ and cosine terms for B 1 and p1 in (6)-(8). 
Thus, the analysis needs five positional, six thermal and 
six occupational parameters. Of these, one occupational 
parameter P~ is fixed at ½ from the composition of the 
crystal used. On the other hand, 10 positional, 10 
thermal and 10 occupational parameters are necessary 
in the usual analysis (Okamura et al., 1968). This 
corresponds to using both sine and cosine terms for 
u~, B 1, pl. 

4. Structure refinement 

A full-matrix least-squares program written by the 
author was used for the refinement. In the program, 
~. w(IFol - IFcl)2/~. WlFo 12 is minimized, where w is a 
weight factor. (Unit weights were used in the present 
analysis.) The refinement was started from the param- 
e t e r s u ~ , = B ~ = 0 f o r n =  1,2 . . . . .  5, p l = 0 f o r n =  
2, . . . ,  5 and P1 = ½, Bo ~ = 1 A 2. This structure has only 
a harmonic modulation wave for the occupation 
probability. 

First, u~l, u2s,1 pl, pl3, B~, B~, B~ were refined by using 
the main, first-order satellite and third-order satellite 
reflections because these reflections are strong and the 
parameters largely contribute to such reflections. After 
three cycles, R -- 0.13 was obtained for observed 
reflections. Next, all parameters were refined by using 
reflections up to the fifth-order satellite reflections. The 
R value obtained was 0.10 for observed reflections. At 
this stage, the modulation function for the occupation 
probability was plotted. The curve showed a non- 
physical feature, viz the occupation probability largely 
exceeded one in some regions and was smaller than 
zero in other regions. It was noticed that this was 
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Table 1. The positional parameters (× 104), thermal parameters (x 102) and occupational parameters (× 102) in 
CuAu II 

Each parameter is the Fourier coefficient of the modulation wave for Cu which corresponds to the Fourier term (FT) in the first two lines. 
The standard deviations are in parentheses. 

FT: (1) cos 0 = 1; (2) cos 2rc.~4; (3) sin 2rL~4, (4) cos 47t'.x'4, (5) sin 47L~4; (6) cos 6zr~4; (7) sin 67/'.~'4; (8) COS 87L~'4; (9) sin 8zr~4; (10) 
cos 10zrx4; (11) sin 10zrx 4. 

FT (1) (2) 

(a) Present work 
/2 2 
B" 122 (12) 102 (21) 
P 0 62 (2) 

(b) Okamura et al. (1968) 
u2 3 0 
B 128 84 
P 0 57 

(3) (4) (5) (6) (7) (8) (9) (I0) (1 I) 

88 (14) - I I  (17) --40 (16) -27 (15) -6  (12) 
65 (17) 45 (17) 5 (15) -14 (9) 
-3 (1) -23 (2) 0 (1) 9 (1) 

136 8 48 26 -24 21 -13 0 15 
5 2 7 -28 1 -28 -1 -6  0 
1 - 3  0 - 1 6  - 2  1 0 7 0 

because the sign of P~ was wrong. Correcting the sign, 
the final refinement converged to R = 0.096. [The 
appearance of a subminimum with such a small R value 
is considered to be due to the small displacement as 
stated in (I).] The final R value is comparable to the 
value R = 0.107 obtained by Okamura  et al. (1968). 
The final parameters are listed in Table I together with 
those of Okamura  et al. As shown in the table, the 
usual analysis includes extra parameters corresponding 
to cosine terms for u~ and sine terms for B ~ and pl.  
These terms are small as expected.* 

5. T h e  s tructure  in t h r e e - d i m e n s i o n a l  s p a c e  

The structure has a block-type modulation wave for the 
occupation probability (see Fig. 3). The block-type 
function has the amplitudes Re P~ = 0.5, Re PI = 
0.6366, Re P~ = - 0 . 2 1 2 2 ,  Re P~ = 0.1273 . . . .  As 
seen in Table 1, the present result is closer to the 
block-type function than that of Okamura  et al. 
However, these have common features" in both cases 
the amplitude P~ is small compared with that of the 

* A list of structure factors has been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
36660 (5 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH l 2HU, England. 

z4 
0 0 0.2 O,Z. 0,6 0;8 1,0 O01  02 

OZ. 
P 06 

O8 
10 

Fig. 3. The modulation functions for the occupation probability of 
Cu. (a) Starting point. (b) Final result. (c) Okamura, Iwasaki & 
Ogawa (1968). 

block-type function. This makes the slope small near 
the antiphase boundary. Fig. 4 shows the modulation 
wave for the displacement along the b axis. 

The occupation probability and the position of any 
atom can be obtained from the modulation functions in 
Figs. 3 and 4. As stated in (I), a vector x = x~ a + x2 b 
--1- X 3 C in R 3 is expressed by x~ a~ + x2 a2 + x3 a3 + 
k2x  2 a 4. The occupation probability and the displace- 
ment along the b axis of the Cu atom are obtained from 
(9) and (11) by P~(k2Yc ~) and u~(k2Yc ~), where .~ 1 is the 
x2 coordinate in the fundamental  structure. Therefore, 
Figs. 3 and 4 show the change in the occupation 
probability of Cu and the displacement of the metal 
sites along the b axis. It should be noted, however, that 
the satellite reflections with high h 4 index are very weak 
and the superposition of reflections on R 3 [see (I)] can 
be neglected in the present case, so that the phase of the 
modulation waves is not precisely determined. 
Therefore, the atomic configuration given from the 
modulation wave shifted by an arbitrary value along 
the a 4 axis is also equally probable. 

For convenience, we call sites dominantly occupied 
by Cu (Au) atoms Cu (Au) sites. The gentle slope 
near the antiphase boundary means that the Cu (Au) 
sites near the boundary are occupied appreciably by 
Au (Cu) atoms. This shows that CuAu II has 
considerable disordering in the vicinity of the anti- 
phase boundary as stated by Okamura  et al. (1968). 
Fig. 4 shows that Cu sites near the antiphase boundary 
shift towards the boundary and Au sites displace away 

O0 0.2 0.4 0.6 0.8 1.0 

0.23 f 

x2 0.251 --'--~ ~ I 
0.27 I ~ -  \lal I/,l i~l " - ~  

Fig. 4. The modulation functions for the displacement along b. (a) 
Starting point. (b) Final result. (c) Okamura, Iwasaki & Ogawa 
(1968). 
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from the boundary. These features will be shown 
clearly by the Fourier map in § 6. Although there is 
a small difference between the present result and that of 
Okamura  et al., the two structures are essentially the 
same. 

6. Fourier synthesis 

The Fourier synthesis in four-dimensional space gives 
the electron density based on a four-dimensional lattice 
which describes the modulated structure (de Wolff, 
1974). The electron density of a four-dimensional 
lattice is 

( 4 } 

p(xl ,x2,x3,x 4) = ~. Fh, exp 2rci~. hjxj ,(14) 
hl,h2,h3,h 4 j =  1 

where h' = hlb~ + h2b2 + hab3 + h464. In the present 
case, the structure factor Fh, in R 4 is approximated by 
the structure factor Fh in R a calculated from (13). One 
example of the electron density map is shown in Fig. 
5(a). This represents the projection of p(¼,X2,X3,X4) 
along the aa axis since only h~h2Oh4 reflections were 
used in the Fourier synthesis. The figure shows a 
typical feature of substitutional modulation: the peak of 
electron density runs along the a4 axis with changing 
height. The usual three-dimensional space is perpen- 
dicular to the a4 axis. Therefore, the Fourier map in R 3 
is given by the section at the solid line normal to the a 4 
axis in Fig. 5(a). One of these sections is illustrated in 
Fig. 5(b). This is the projection of the electron density 
along the c axis. Strong peaks correspond to the Au 
sites and weak peaks to the Cu sites. A broken bisector 
indicates the antiphase boundary. As is clear from the 
figure, the Cu sites near the antiphase boundary are 
appreciably occupied by Au, and the Au site near the 
boundary slightly shifts away from the boundary while 
the Cu site shifts towards the boundary. 

a~ 

i 

(a) 
Cu Au Cu Au Cu Cu Au Cu Au . Cu 

a Au Cu Au Cu Au Au Cu Au Cu Au 

~ . . .  . . . . . . .  . . . . . . . . .  . . . . . . .  . . . . .  

5 b  

(t,) 
Fig. 5. (a) The electron density in the x2 - x 4 plane at x~ = ¼. The 

map shows the projection of the electron density p(¼,x2,x3,x4) 
along a 3. (b) The section of the usual three-dimensional space at 
the solid line in Fig. 5(a). This is the usual electron density map 
projected along c. 

7. Noneentrosymmetrie space groups 

We analyzed the structure based on the centrosym- 
metric space group. The possibility of the two 
noncentrosymmetric groups allowed from the fun- 
damental structure and the extinction rules is con- 
sidered in this section. One of these is generated by 
(ax 1½,0,0,0), (try 10,½,0,0), (C2z 1½,½,0,0) and the centering 
translations of a G(1,2)-centered lattice and the other is 
generated by (axl½,0,0,0), (C2yl½,0,0,0), (a~10,0,0,0) 
and the same centering translations.* The former 
allows the cosine terms in the modulation function of 
the x a coordinate in addition to the terms allowed by 
the centrosymmetric space group while the latter allows 
the cosine terms for x 2 and the sine terms for P other 
than the centrosymmetric ones. The analysis based on 
the latter is equivalent to the analysis by Okamura  et 
al. (1968) (see Table 1). This is rejected since 
Okamura 's  result gives no improvement. The former 
cannot be rejected from the present analysis because 
the modulation for x 3 does not affect h~h20h a used in 
the present analysis. The analysis using three- 
dimensional reflections can determine the true space 
group and structure but this is beyond the scope of the 
present study. 

8. Concluding remarks 

The present paper shows that the antiphase-domain 
structure of CuAu II can be analyzed on the basis of a 
four-dimensional space group by regarding the struc- 
ture as a modulated structure. The extinction rules 
observed in the diffraction pattern are well explained by 
the four-dimensional space group because of the 
conservation of the centering translations present in the 
fundamental structure, so that the number of 
parameters in the analysis reduces to about a half of 
that required in the usual analysis based on a 
three-dimensional space group. The four-dimensional 
symmetry is higher than or equal to the three- 
dimensional symmetry (Yamamoto & Nakazawa,  
1982). The present study concludes that, in general, the 
modulated structure is more easily analyzed by the 
application of the multi-dimensional description of 
modulated structures. 

The author thanks Dr Nakazawa for drawing his 
attention to the modulated structure of CuAu II. 

vm,~2 n Fm2~ in the symbol of de Wolff, * These are written as L ~ r i a d L ~ i 
Janner & Janssen (I 981). 
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Abstract  

The structure of the incommensurate phase of Fel_xO 
(x = 0.098) with a cubic fundamental cell [a = 
4.30 (4)A] has been analyzed on the basis of a 
six-dimensional expression of the structure factor and a 
six-dimensional space group u~m3,~ The structure is • Pm3m" 

described as a threedimensionally modulated struc 
ture with a wavy distribution of Fe vacancies and a 
slight displacive modulation with incommensurate 
wavevectors k ~ = 0.398a*, k 2 = 0.398b*, k 3 -- 

0.398e*. Methods of obtaining six-dimensional sym- 
metry and the possible form of the modulation wave in 
the three-dimensionally modulated structure are shown. 

1. Introduction 

The analysis of CuAu II based on a four-dimensional 
space group was shown in the previous paper 
[Yamamoto (1982b), hereafter (II)]. In this paper, the 
structure-factor formula derived in the first paper 
[Yamamoto (1982a), hereafter (I)] is applied to the 
known structure of wustite, Fel_x O, which has three- 
dimensional modulation (Koch & Cohen, 1969), to 
demonstrate an analysis based on the formula and a 
six-dimensional space group. Because of the non- 
stoichiometry of this material, the satellite reflections 
originate from a periodic distribution of vacancies. This 
density modulation is accompanied by the displacive 
modulation. Thus wustite is a typical example of 
three-dimensional density modulations. 

t A preliminary report has been published (Yamamoto, 
Nakazawa & Tokonami, 1979). 

The three-dimensional modulation shows charac- 
teristic satellite reflections: all reflections are specified 
by six integers hl-h 6 as 

h = h 1 a* + h 2 b* + h 3 C* + h 4 k I + h 5 k 2 + h 6 k 3, (1) 

where a*,b*,c* are the unit vectors in the reciprocal 
lattice of the fundamental structure, which is the 
rock-salt §tructure in the present case. kl,k2,k 3 are 
fractional vectors in the three-dimensional space R 3, 
each of which cannot be described by an integral linear 
combination of the others. 

Wustite, Fe~_xO with x = 0.098, has the wave- 
vectors k I = 0.398a*, k 2 = 0.398b*, k 3 -- 0.398e*. 
This is a well known example of an incommensurate 
structure with the three-dimensional modulation. This 
three-dimensional modulation is analyzed by using data 
of Koch & Cohen (1969). The aim of the present paper 
is to describe the method of analyzing the modulated 
structure with the three-dimensional modulation based 
on a six-dimensional space group. 

2. Slx-dimensional space group 

The symmetry of a three-dimensionally modulated 
structure is described by a six-dimensional space group 
(Janner & Janssen, 1977). The unit vectors of a 
six-dimensional reciprocal lattice are given by b~ = a*, 
b 2 -- b*, b 3 -- e*, b4 = k I + dl, b5 = k2 + d2, b6 = k3 + 
d3, where d l , d 2 , d  3 a r e  the unit vectors perpendicular to 
R 3. The unit vectors reciprocal to these are aj = a - 

3 kld,,b3 e - Z ~ , k ~ d i  ~=lk~ d t, b 2 = b -  ~ i=1  = 
and a3+ i ----- d i (i --  1,2,3), where a,b,c are the unit 
vectors of the fundamental structure which are recipro- 
cal to a*,b*,e* and bi bi bi "1,"2,"3 are the a*,b*,e* com- 
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